1     2     3     4     5     6     7     8     9     10     11     12    

P. Geibel and F. Wysotzki:. Learning Spatial Relations in the Context of Mental Models. In: Proceedings of the Workshop on Algebraic Models of Reasoning, KI 2003, 2003. PDF

U. Brefeld, P. Geibel and F. Wysotzki: Support Vector Machines with Example Dependent Costs. In: N. Lavrac, D. Gamberger, L. Todorovski, H. Blockeel (Eds.). Proceedings of the European Conference on Machine Learning (ECML 03), p. 23-34. LNAI 2837, Springer, 2003. PDF ((c) Springer-Verlag)

P. Geibel, K. Schädler, and F. Wysotzki: Connectionist Construction of Prototypes from Decision Trees for Graph Classification. Intelligent Data Analysis, 7(2), p. 125-140. IOS Press, 2003. PDF (preliminary version)

P. Geibel and F. Wysotzki: Learning Linear Classifiers Sensitive to Example Dependent and Noisy Costs. In: F. Pfenning, M.R. Berthold, H.-J. Lenz, E. Bradley, R. Kruse, C. Borgelt, editors, Advances in Intelligent Data Analysis - 5th International Symposium on Intelligent Data Analysis, IDA 2003, LNCS 280. Springer, 2003. PDF ((c) Springer-Verlag)


P. Geibel, K. Schädler, and F. Wysotzki: Learning of Class Descriptions from Class Discriminations: A Hybrid Approach for Relational Objects. In: M. Jarke, J. Koehler, G. Lakemeyer, editors, KI 2002: Advances in Artificial Intelligence (p. 186-204), LNAI 2479. Berlin: Springer, 2002. PDF ((c) Springer-Verlag)

P. Geibel and F. Wysotzki: Using Costs Varying From Object to Object to Construct Linear and Piecewise Linear Classifiers. Technical Report Nr. 2002-5 of the Faculty of Electrical Engeneering and Computer Science, TU Berlin, 2002. PDF